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1. Introduction

Several models are available to explain the relationship between the re-

sponse probability and the dosage in quantal bioassay. These include the

probit, logit, one-hit, multi-hit, multistage., and Weibull models. Krewski

and Van Ryzin (1981) provide a review. The maximum likelihood method is

usually employed to estimate the response curves. The Bayesian approach

to these problems has been limited to a few simplified cases. Petrasovi-

tas and Cornell (1975) propose approximations to the Bayes estimates for

the one-hit model with single-dose assay. Zellner and Rossi (1982) employ

numerical integration techniques for computing Bayes estimates in probit

and logit models with noninformative priors. Recently, some advances have

been made for more complex situations. Albert and Chib (1991) develop

a Gibbs sampling approach for the probit model. They also extend their

methods to polytomous responses and the t-link distribution. Gelfand and

Kuo (1991) develop Gibbs sampling approaches for nonparametric dose

response curves with Dirichlet process priors and with product of beta pri-

ors. They also extend their models and methods to polytomous responses.

Ramgopal, Laud, and Smith (1992) extend the work of Gelfand and Kuo

to convex, concave, or ogive potency curves. Nagaraj (1991) proposes an

importance sampling approach for the linearized multi-stage model.

The linearized multi-stage model specifies the probability of a subject's

positive response to a dose at d as

P(d113) = 1 +th ce) (1.1)

with > 0, j = 0, , k. This model is currently used by the U.S.

Environmental Protection Agency (EPA) for risk assessment. As discussed



by Crump, Hoel, Langley, and Peto (1976) and Crump (1979), the model

is based on the assumption that induciior of toxic effects results from a

number of different random biological events, with the age-specific rate of

occurrence of each event linearly related to dose. When k = 1, this is the

on,-hit model described by Armitage and Doll (1961). The model in (1.1)

can also be considered as a generalized linear model (McCullagh and Nelder

1989) with complementary log as the link function.

To apply Bayesian analysis for the unknown parameters = " 90k),

we assume that the ,30, ,13k are independent, where 0, has a gamma dis-

tribution f(a;, -y1) with mean all-y3 for j = 0, . . . , k. The gamma distri-

butions are chosen partly for convenience. The family of two parameter

gamma densities, though, incorporates densities with both increasing and

decreasing failure rates. Often statisticians have some prior belief about

the location and spread of the distribution of i31 for each j. Let p and cr;

denote a prior guess of this location and spread. Then a; and -y; can be

chosen by the method of matching moments so that they satisfy p.; =

and = ai 1732 .

In risk assessment, subjects are divided into groups, say I groups,

where for i = 1, . . . , I, n, subjects are given the substance at dosage level

c11. The number of casualties observed in group i is denoted by xi. Let

x = (xi, , xj). Given /3, the subjects' responses are assumed to be inde-

pendent. Therefore the likelihood function is

L03; '0=11 .).p(d11,3)-,(1-p(dilo))---i.
i=1

It can be shown that the posterior distribution is a mixture of prod-

ucts of gamma distributions. This mixture increases in complexity as I



increases. This paper provides a Gibbs sampling approach to computing

the Bayes estimates. It can be used for any number of groups. This ap-

proach augments the data by latent variables that convert the integrals

(cumulative probabilities and survival probabilities) in the likelihood to

probability density functions. This augmentation facilitates us in speci-

fying the conditional density of 13 given the latent variables. A repeated

sampling scheme that generates variates from this conditional density and

the conditional density of the latent variables given 13 and the data allows

us to approximate the posterior distribution.

The dose response model in (1.1) is often used for low-dose extrapola-

tion, where the potency of a toxic substance on human beings (at low dose)

is inferred from experiments conducted at much higher doses. Practition-

ers are often interested in "Relative Additional Risk" (RAR) and "Risk

Specific Dose" (RSD). We provide methods of Bayesian inference for these

quantities. RAR can be interpreted as the conditional probability of a sub-

ject acquiring cancer, say, at dose level d, given that no cancer has been

developed in the absence of the carcinogen. RSD measures the dosage such

that the probability of a casualty is no more than a given number.

Because the model in (1.1) depends on k, the number of parameters,

it is natural to ask how to select k. One route to selecting k has been for

biologists to propose theory to explain the model. Another route, more

empiric -il, is to fit the models to data. Chi-squared goodness of fit tests are

usually employed by frequentists for model checking. A criterion for model

selection based on Bayesian predictive ordinates from cross-validated data

is adopted in this paper.

Section 2 describes the Gibbs sampling approach. Section 3 addresses
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estimation of RAR and RSD. Section 4 develops the criterion for model

selection. Examples are given in Section 5, and some concluding remarks

are provided in Section 6.

2. Gibbs Sampling

A Gibbs sampling approach specific for our problem is developed here

to compute the posterior distribution of 0. One can refer to Geman and

Geman (1984), Tanner and Wong (1987), and Gelfand and Smith (1990)

for general discussion of Gibbs sampling.

Given the likelihood and the prior, we observe that the posterior density

of 0 is

f (13k) cx fl (1 cc804-Ad.+-ok4))., P
i=1

11
i=0

(2.1)

To sample 0 from (2.1) by stochastic substitution with augmented data

z, we can sample repeatedly from f(210, x), the conditional distribution

of z given )3 and x, and f(01z, x), the conditional distribution of 3 given

z and x. Therefore, it is desirable to augment the data by the latent

variables z, such that we can easily sample variates from the two conditional

densities f(z10, x) and f(01z, x). For each i, let us consider the latent

variables {z}, j = 1, , xi, as i.i.d. random variables with an exponential

distribution with mean 1/(00 + [31cli + + 0k4). Observe that

P (zi) < 1) = 1 _

Assume the distribution of the zi = (zo, , zi,zi) are independent for i =

1, . . . , I. Let z (z1, , z1). Then the conditional density of z given 0

5
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and x is
x

g(0,x) = fl JJg1(z1j13,x),
(2.2)

i=1 j=1

where g, is derived from an exponential distribution with mean 1/(/30 +

di + +Okdsk) by truncation on the right by 1. To obtain the conditional

density of )13 given z and x, set ss(13) = fiti + Oidi + + fikci:F and observe

f(Olz,x) QJ try j +ELI x
ix II

x 111.si(f3)]nie-3i0(3)(E;i1
i=1

(2.3)

This suggests another data augmentation step is needed to facilitate the

generation of the 13 variate given the latent variables. For each i, consider

wi = (wo, , wik) distributed as a multinomial distribution with parame-
filkdk

ters x, and cell probabilities (
' '

. . . 7* ). Moreover, generate
446) sip)

the wl, , w1 independently. Let w denote (w1,... , wj). Then the joint

density of the w is given by

f (wp,x) n mwdx,

ikxi Oo u" 131di Nd
i=3(wio wik) siA I

)
SO) ) siO3)

Let z1+ E7L1 z,. Now the conditional density of given z, w, and x

can be verified to be the product of independent gamma densities with

parameters exj = ELI wj and = ELI dRzi+ + ni xi),

f (/31z, w, x) cx II I e--1)13j (2.5)
i=0

Having explained the conditional densities needed in the substitution algo-

rithm, we list the steps used to generate the samplers.



(1) Start with an initial choice of the 13, denoted by 00) Set the counter

in the superscript to 0.

(2) Generate z(1) and NO) independently from f (0°),x) as in (2.2) and

f(w10°),x) as in (2.4).

(3) Generate 01) from f Piz(1) ,w(') , x) as in (2.5).

(.4) Repeat steps (1), (2), and (3) with the updated cmmter in all the

superscripts, that is, with 01+1) replacing 01), etc., in each step.

The generation of zo in (3) from the truncated density can be facilitated

by use of the equation zo = G-1(G(0)+ Ujj (G (1) G(0) )), where the Uo are

independent uniform [0,1] variates, and G is the exponential distribution

function with mean 1/03). Then, zo = ln(1 Uo(1

independently for j = . . . xi.

Suppose we also replicate the above iterations R times by using inde-

pendent initial choices of the 13. Let the 13, z, and w variates generated in

the Lth step of the iteration for the 74' replication be denoted by le,

and Y4L), for r = 1, . . . R. Similar notation is applied to the variates

etc. Then the posterior distribution of 13 is estimated by

1
MIX) - E fplzr(L), v,4.L),x), (2.6)

R r=1

where f on the right is the product of gamma distributions described as

in (2.5). Since the i3j, j = 0, , k, are independent in (2.5), the posterior

mean of Oj can be approximated by

(L)
CY j Ei=1 ij1 v.

3: (ZCL)
r ni xi)

0.1 E(1ryj + i=1 '+'

(2.7)



The computations in (2.6) and (2.7) use only the variates generated

in the last step of each iteration. A more efficient algorithm has been

proposed by Gelman and Rubin (1992) where estimates are produced by

averaging over all variates generated in the second halves of the iterations

for all replications. They also study the choices of L and R by analysis of

variance techniques.

We will use the empirical values fer)e--.1 from the replicated samples

to construct the predictive interval for Op

3. Relative Additional Risk and Risk Specific

Dose

The computation of some functionals of the parameters by stochastic

substitutiori c'iscussed in this section.

The relative aJditional risk over the background at a dose of level d is

defined by
P(d) P(0) =1 esid+-+19kdk

A(") 1 P(0)

The relative additional risk can be interpreted as the conditional probability

of acquiring cancer, for example, at dose level d given that no cancer has

developed in the absence of the carcinogen. Observe that A(d) ,3]d at

low dose. Let A.1.)(d) denote an estimate of A(d) computed from the Lth

iteration and the rth replication in the sampling procedure. Then A.L)(d)

can be computed from (2.5) and the moment generating functions of the



gamma distributions

^yj + EL) dji(ni xi + 41"),.)
A(d)

J=0 di +7,-F (ni xi + Zi(+L),.)

(3.1)

The Bayes estimate for A(d), denoted by A(d), is computed from

1 R
A(d) = A.L')(d). (3.2)

The predictive interval for A(d) can be computed from the empirical mea-

sure that assigns weight 1/R to each M.L)(d) for r = 1, . . . , R.

The Risk Specific Dose (RSD) is defined as the dose level such that the

probability of a casualty P(d) is at most B. RS D(0) is the %alue d such

that P(d) = O. Equivalently, RS D(0) is defined to be the largest real root

of the following equation:

ln(1 9) + fici 1 /31 d + Okdk = 0. (3.3)

Since the parameters {8j}/1=0 are unknown, we propose to estimate the

j = 0, , k, by (2.6) first, then find the roots of (3.3) where 13 is

replaced by the estimates of fii, for all j = 0, , k. Observe that when

k = 1, then RS D(0) [jo + ln(1

4. Mod.el Selection

The selection of k, the degree of the polynomial in the exponent of (1.1),

is studied in this section. A criterion based on the conditional predicted

ordinates from cross-validated data is adopted for model selection. This

approach, called pseudo-marginal likelihood, was first proposed by Geisser



and Eddy (1979). The role of using predictive densities from cross-validated

data for model determination was also supported by Stone (1974), Box

(1980), and Pettit and Young (1990). Box (1980) states that the predictive

distribution enables one to criticize the entertained model in the light of

current data. Gelfand, Dey, and Chang (1992) have provided more detailed

discussion of Bayesian model selection and its implementation by means of

Gibbs sampling.

Because the selection criterion was developed for independent observa-

tions, we need to reconsider our data from this viewpoint. Suppose each

subject is given a dose independently. The response of each subject is ei-

ther positive or negative. Therefore, we observe n independent Bernoulli

random variables with probability of success pa, s = 1, . , n. If cl2(5) is the

dosage for subject s, then

Ps = 1 e-(43v1-sidic.)+..+0,d;().

Let y(s) denote the whole data set with the sth observation ys deleted. The

conditional predicted ordinate (CPO) for ya, denoted by c, is defined by

Cs= f(y51Y(5))= f f(YslaY(.))f(1313((.))d0. (4.1)

Note c, depends on k. We suppress this dependence in the notation for the

time being for simplicity.

The estimated density is(Ply(5)) can be computed as in (2.6) with yi

deleted from the data set. Let ettr) and tC.) denote the parameters of

the gamma density of /3; in (2.5) and (2.6) computed from the data with

y, deleted. Since f (y4, y(5)) = gy,113) = pr (1 pa)l-14, the computation

of (4.1) is straightforward with the use of the moment generating function

10
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of a gamma distribution. If y, is 0 and the 8th subject is given the dosage

d, then c, is approximated by

1

co

64)
R k (L) .1.r,(*)E 11.7,r,(8)

^ (L) A_r=1 j3
(4.2)

If y, is 1 and the sth subject is given the dosage d, then c, is approximated

by one minus the right side of(4.2). The variance of CPO c, is given by

2

V(C3) f e_2(A+thd+."4-'3*d')f ($ly(8))43 (f e-1d+.-414dk)f (8ly(a))43) .

It is approximated by

(c 3) =

6(1,)

R k (L)

R E
(L) 2d)r=1 j.0 ,j,r,(s)

(4.3)

Since c, depends on k, we now use the notation c,(k) for c, based on the

model with a k degree polynomial in the generalized linear model. Define

the pseudo-marginal likelihood C (k) = 1T:=1 65(k). We select the k with the

largest pseudo-marginal likelihood. Equivalently, we select the model with

the largest Er:=1 In C,(k).

5. Numerical Examples

5.1 Bayes Inference

The data set is taken from Howe, Crump, and Van Landingham (1986).

Nagaraj (1991) also used it for illustration. There are 200 animals divided

into four groups with 50 animals in each group. The dosages assigned to the

11



groups are 0, 1, 2, and 3. The observed number of positive responses x in

each group is (0, 2,10, 30). Tables 1-3 exhibit the various Bayes estimates

computed based on the Gibbs sampling method with 50 iterations and 1000

replications. Three models with k = 1,2, 3 are considered, each with three

choices of priors. The choices are (1) a; = 2 and -y, 20 for all j, (2)

a; = = 1 for all j, and (3) c = 1 and 7; = .01. The priors are chosen

to center at .1, 1, and 100 with small, medium, and large variances. The

parameters and functionals of interest are j = 0, , k, and the Relative

Additional Risk (RAR) A(d) evaluated at d = .5,1, 2, and 3 (A(0) = 0 by

definition). For each of these functionals, we display the point estimate

(posterior mean), the posterior standard deviation, and the posterior 95%

confidence interval. The Bayes estimates for P(d) evaluated at the dosage

levels are also given. The corresponding standard deviations and confidence

intervals can be computed from the Gibbs samplers by methods similar to

those for fi; and A(d). They are omitted here for brevity. The risk specific

dose (RSD) for 0 = .025, .05, .075, .1, .125, and .15 is provided.

The results of these tables show that the Bayes estimates for the second

and third choices of the priors are very close to each other. The effect of

the small mean and variance of the first prior can be seen from the highest

coeffici, at (0k) for each model. As k increases, the Bayes estimates of P(d)

for d = 0, 1,2, and 3 approach the nonparametric maximum likelihood

estimates, which are 0, .04, .2, and .6, respectively.

5.2 Model Selection

The numerical results for the model selection are given here. We have

considered each y s = 1, , 200, to have a Bernoulli distribution with

12



the probability of a success (positive response) to be P (d), where d is the

dose given to the subject s. Given the data x = (0, 2,10, 30) observed at

the dosages 0, 1, 2, and 3, we can consider y, = 0 for s = 1-50, 53-100,

111-150, 181-200, and y, = 1 for the rest of the indices.

Because of the grouped data x, many of the CPO's will have the same

value. In fact, instead of computing 200 CPO's, we need only compute 7

of them. Let n denote the number of subjects in each group. Then the

computation of the CPO for s = 1,...,50 is based on n (49,50,50,50)

and x = (0, 2, 10, 30); the CPO for s = 51,52 is based on n =-- (50,49,50,50)

and x = (0,1,10,30), etc.

The values of the CPO's for each prior choice with different models are

given in Tables 4-6. Usually we prefer to select a diffuse prior for model

selection and let the data do the talking. In our examples, the analysis is

relatively insensitive to the prior choice. They all suggest that the model

with k = 2 improves upon the model with k = 1. Although the pseudo-

marginal likelihood factor for the model with k = 3 is slightly larger than

that of the smaller model, the improvement is very marginal. This suggests

either model, k = 2 or k = 3, may be acceptable for the data set. In fact,

Table 7, which provides the Gibbs approximation to the pseudo-marginal

likelihood for k = 1,2,...,9, shows that the pseudo-marginal likelihood

is essentially flat for 2 < k < 9. Table 8 indicates that the value of the

coefficient A, important for low-dose extrapolation, is not sensitive to the

model for k > 3.
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Table 1: Gibbs Approximation to the Bayes Estimates when k = 1

cti = 2,19 = 20 ai = 1,7i = 1 ai = 1,7j = .01

i)c, (SD) .022 (.011) .011 (.008) .012 (.008)

95% C.I. (.010, .050) (.005, .034) (.006, .034)

:ji (SD) .161 (.009) .175 (.007) .175 (.007)

95% C.I. (.138, .174) (.157, .185) (.157, .186)

A(.5) (SD) .077 (.015) .084 (.015) .084 (.016)

95% C.I. (.066, .083) (.075, .088) (.075, .089)

.A(1) (SD) .148 (.024) .160 (.025) .160 (.025)

95% C.I. (.129, .159) (.145, .169) (.145, .169)

A(2) (SD) .274 (.039) .294 (.040) .294 (.040)

95% C.I. (.240, .293) (.268, .309) (.268, .309)

A(3) (SD) .380 (.049) .406 (.050) .406 (.050)

95% C.I. (.337, .405) (.373, .425) (.373, .426)

P(0), P(1) .021 .167 .011 .170 .012 .170

P(2), P(3) .290 .395 .302 .414 .304, .415

RSD(.025), RSD (.05) .022 .184 .079 .228 .076 .225

RSD(.075), RS D (.10) .350 .521 .381 .538 .377 .534

RS D(.125), RSD(.15) .697 .877 .699 .865 .695 .861

14



Table 2: Gibbs Approximation to the Bayes Estimates when k = 2

a., = 2,-y3 = 20 aj = 1, ^6 = 1 ai = 1,-6 = .01

4o (SD) .019 (.009) .011 (.008) .011 (.008)

95% C.I. (.010, .041) (.006, .033) (.006, .034)

4, (SD) .037 (.021) .029 (.026) .032 (.026)

95% C.I. (.008, .088) (.004, .100) (.004, .100)

42 (SD) .063 (.011) .068 (.012) .067 (.012)

95% C.I. (.039, .079) (.035, .083) (.035, .083)

A(.5) (SD) .034 (.014) .031 (.015) .032 (.015)

95% C.I. (.023, .053) (.021, .058) (.021, .057)

A(1) (SD) .096 (.020) .093 (.021) .094 (.022)

95% C.I. (.079, .121) (.076, .125) (.077, .128)

A(2) (SD) .279 (.038) .281 (.038) .282 (.038)

95% C.I. (.251, .296) (.258, .299) (.257, .300)

A(3) (SD) .491 (.057) .502 (.057) .501 (.057)

95% C.I. (.440, .527) (.449, .535) (.449, .532)

P(0), P(1) .019 .113 .011 .103 .011 .105

P(2), P(3) .293 .504 .290 .510 .291 .510

RS D(.025), RSD (.05) .139 .479 .288 .582 .275 .568

RS D (.075), RSD (.10) .715 .910 .798 .980 .785 .968

RS D(.125), RSD (15) 1.083 1.240 1.142 1.290 1.131 1.280

15
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Table 3: Gibbs Approximation to the Bayes Estimates when k = 3

aj = 2, -yi = 20 aj = 1, .-yi = 1 aj = 1, -yj = .01

40 (SD) .018 (.008) .012 (.008) .011 (.008)

95% C.I. (.010, .041) (.006, .034) (.006, .033)

:ji (SD) .030 (.017) .025 (.019) .025 (.020)

95% C.I. (.008, .071) (.004, .074) (.004, .073)

42 (SD) .025 (.014) .023 (.018) .023 (.018)

95% C.I. (.005, .057) (.002, .066) (.002, .067)

43 (SD) .019 (.006) .020 (.007) .020 (.008)

95% C.I. (.007, .029) (.003, .031) (.003, .031)

A(.5) (SD) .023 (.014) .021 (.014) .021 (.014)

95% C.I. (.012, .041) (.008, .043) (.007, .041)

A(1) (SD) .071 (.020) .066 (.022) .066 (.022)

95% C.I. (.049, .100) (.041, .101) (.040, .100)

A(2) (SD) .268 (.037) .260 (.038) .260 (.038)

95% C.I. (.239, .291) (.231, .288) (.232, .289)

A(3) (SD) .560 (.059) .555 (.061) .558 (.061)

95% C.I. (.503, .604) (.500, .601) (.502, .601)

P(0), P(1) .018 .088 .012 .077 .011 .076

1(2), P(3) .282 .572 .269 .565 .270 .567

RSD(.025), RSD(.05) .195 .624 .370 .741 .381 .748

RSD(.075),RSD(.10) .888 1.091 .983 1.173 .989 1.177

RSD(.125), RSD(.15) 1.258 1.405 1.332 1.472 1.335 1.474
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Table 4: Gibbs Approximation to the CPO for the Prior with aj = 2 and

= 20 for all j

s 1-50 51-52 53-100 101-110 111-150 151-180 181-200 ln(F1 ês)

k = 1 .980 .163 .833 .285 .708 .389 .601 -78.242

SD(c3) (.017) k.024) (.024) (.037) (.037) (.047) (.047)

k = 2 .982 .110 .887 .288 .706 .495 .494 -72.743

SD(cs) (.015) (.022) (.022) (.037) (.037) (.055) (.055)

k = 3 .982 .084 .912 .277 .717 .563 .424 -70.863

SD (c5) (.016) (.021) (.022) (.036) (.036) (.059) (.058)

Table 5: Gibbs Approximation to the CPO for the Prior with aj = 1 and

= 1 for all j

s 1-50 51-52 53-100 101-110 111-150 151-180 181-200 ln(p as)

k = 1 es .988 .166 .830 .297 .696 .406 .584 -77.560

S D(c3) (.014) (.025) (.025) (.039) (.039) (.049) (.049)

k = 2 63 .989 .100 .895 .285 .709 .501 .488 -71.942

SD(c.) (.015) (.022) (.023) (.038) (.038) (.056) (.056)

k = 3 Cs .988 .071 .923 .264 .730 .555 .431 -70.132

S b(c) (.015) (.022) (.033) (.037) (.037) (.060) (.060)

17
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Table 6: Gibbs Approximation to the CPO for the Prior with (xi = 1 and

-yj = .01 for all j

s 1-50 51-52 53-100 101-110 111-150 151-180 181-200 ln(n 65)

k = 1 es .988 .167 .829 .298 .695 .407 .582 -77.623

S D (c 8) (.015) (.025) (.025) (.039) (.039) (.049) (.049)

k = 2 . a, .989 .100 .894 .286 .708 .501 .487 -71.997

S b(c) (.015) (.022) (.023) (.038) (.038) (.056) (.056)

k = 3 6, .988 .073 .922 .264 .730 .556 .431 -70.122

S D (c 8) (.015) (.023) (.024) (.037) (.037) (.061) (.060)

Table 7: Gibbs Approximation to the Pseudo-Marginal Likelihood ln C (k)

1 2 3 4 5 6 7 8 9

aj = 2 & -yj = 20 -78.242 -72.743 -70.863 -70.358 -70.368 -70.784 -71.334 -71.959 -72.912

a) = ^y) = 1 -77.560 -71.942 -70.132 -69.856 -69.441 -69.764 -70.065 -70.058 -70.423

a) = 1 = .01 -77.623 -71.997 -70.122 -69.798 -69.743 -69.603 -69.864 -70.044 -70.425

Table 8: Gibbs Approximation to the Bayes Estimates of 01

1 2 3 4 5 6 7 8 9

a) = 2 & -yj = 20 .161 .037 .030 .027 .026 .026 .025 .024 .024

= ^yj = 1 .175 .029 .025 .024 .024 .024 .023 .024 .025

a) = 1 At ry) = .01 .175 .032 .025 .025 .024 .024 .024 .024 .025
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6. Concluding Comments

We have illustrated the usefulness of the Gibbs sampling method in the

linearized multi-stage model. The results can also be extended to the hier-

archical Bayesian setup where the hyperparameters cri and y, are random

with appropriate distributions. The implementation of the Gibbs method

can be carried out by methods similar to those in Gelfand and Smith (1990). ,

When there is no conjugacy structure involved, the Metropolis algorithm

(Metropolis, et al. 1953) can be used for sampling the variates. The re-

sults can also be extended to different prior distributions; for example,

instead of gamma distribution, we can assume that each A, has a truncated

normal distribution, because 0, > 0. Then we can specify that the mean

and variance of the normal distribution have normal and inverse gamma

distributions. The Gibbs method can be implemented as in Section 2.
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